

S•PACT GmbH phone: +49 241 9569 9812
Burtscheider Str. 1 fax: +49 241 4354 4308
52064 Aachen e-mail: support@s-pact.de
Germany

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

PEAXACT Application Server
User Manual

Version 4.7
2019-03-22

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

© COPYRIGHT 2019 by S-PACT GmbH

The software described in this document is furnished under a license agreement. The soft-
ware may be used only under the terms of the license agreement.

Software is based on MATLAB®. © 1984-2019 The MathWorks, Inc.

CONTENTS 3

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

CONTENTS
Contents .. 3

1 Quick Start .. 4

1.1 What is PEAXACT Application Server? .. 4

1.2 Getting Help .. 4

1.3 Installation & License Activation .. 5

1.4 Before You Start .. 8

2 Application Programming Interface (API) ... 9

2.1 .NET API .. 9

2.2 COM API ...20

2.3 Programming Examples ... 25

3 Custom Interfaces ... 29

3.1 OPUS Process .. 29

3.2 HoloPro .. 32

4 PEAXACT ProcessLink ... 36

4.1 Setup .. 36

4.2 Real-time Table .. 38

4.3 Real-time Chart .. 38

4.4 Result File ... 39

4.5 OPC UA Server .. 40

4.6 OPC Security Setup .. 41

4.7 Command Line Usage .. 41

4.8 Additional Notes .. 42

5 Trouble Shooting ... 43

1 - QUICK START 4

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

1 QUICK START

1.1 What is PEAXACT Application Server?
The PEAXACT Application Server gives third-party applications access to PEAXACT analysis
methods by means of an application programming interface (API). The API is available as

• .NET assembly

• COM component (Component Object Model)

Any application supporting one of these standards will be able to programmatically integrate
PEAXACT as a back-end analyzer.

In addition, the Application Server provides ready-to-use custom interfaces for

• OPUS Process from Bruker

• HoloPro from Kaiser Optical Systems

as well an interactive Windows App – the PEAXACT ProcessLink – to link PEAXACT data anal-
ysis to any third-party application without the need to write custom software at all.

1.2 Getting Help

User Manual

This user manual documents a certain version of the PEAXACT Application Server. You can
find the version number and release date on the title page.

We are continuously working on improving the manual. The latest document version is dis-
tributed as PDF file with each PEAXACT software update. The file is located in subdirectory
help of the PEAXACT installation directory.

Technical Support

The Technical Support can be contacted in different ways:

• E-mail to support@s-pact.de

• Web form at http://www.s-pact.com/support

Note: A subscription of S•PACT Software Maintenance Service (SMS) is required
to be eligible for technical support. The first year of SMS is included with new
PEAXACT product licenses.

mailto:support@s-pact.de
http://www.s-pact.com/support

1 - QUICK START 5

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

Blog

The PEAXACT Blog was launched as a free source of information complementary to the user
manual. It contains tutorials, how-tos, and tips & tricks.
See: http://www.s-pact.com/blog

1.3 Installation & License Activation

1.3.1 System Requirements
• Microsoft Windows 7 SP1 or later (32-bit or 64-bit)

• Any Intel or AMD x86 processor with SSE2 support (2 GHz recommended)

• 2 GB RAM (4 GB recommended)

• Microsoft .NET Framework 4.5 or later

1.3.2 Licensing
PEAXACT software is furnished under a license agreement. The software may be used only
under the terms of the license agreement.

The PEAXACT Application Server can be installed and operated on a given number of desig-
nated computers, provided it is only operated locally (i.e. not remotely). The number of sim-
ultaneous users is not limited. For the full and legally valid conditions please refer to the li-
cense agreement document.

1.3.3 Installation

Step 1: Before You Install

• Make sure your computer fulfills the system requirements.

• When upgrading an existing installation, visit
http://www.s-pact.com/peaxact/whatsnew and read the upgrade notes.

• Make sure you have administrator privileges to perform the installation.

• Make sure your license is valid for the major version number. If you do not have a li-
cense yet you can get a free trial license or purchase a license after installation.

Note: The PEAXACT version consists of two numbers
<major version>.<minor version >, e.g. 4.5

Step 2: Install PEAXACT

• Download the PEAXACT Installer from http://www.s-pact.com/peaxact/download

http://www.s-pact.com/blog
http://www.s-pact.com/peaxact/whatsnew
http://www.s-pact.com/peaxact/download

1 - QUICK START 6

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

Note: The installer's filename is peaxactInstaller_<version>_<platform>.exe
<version> is the version number; <platform> is either win32 or win64. The 32-bit ver-
sion also runs on 64-bit platforms, but not vice versa.
Note: Different major versions can be installed side-by-side, e.g. versions 3 and 4.
Note: The installer upgrades earlier installations of the same major version.

Online Installation (Web Installation)

• If you are going to install PEAXACT on a computer which is connected to the internet
you do not need to download any additional files.

• Run the PEAXACT Installer and follow the setup instructions. Additional runtime
packages are downloaded and installed automatically if detected missing.

Offline Installation

• If you are planning to install PEAXACT on a computer without internet access you
have to download additional runtime packages in advance from
http://www.s-pact.com/peaxact/runtime

• Make sure to download runtime packages for the same platform as the PEAXACT in-
staller (32-bit or 64-bit)

• Save all installer files to a folder on your hard drive / flash drive. Do not rename files.

• Run the PEAXACT Installer file from this folder and follow the setup instructions.
Runtime packages are installed automatically if detected missing.

Step 3: After Installation

• After a new product installation continue with License Activation.

• After upgrading an existing installation check the upgrade notes at
http://www.s-pact.com/peaxact/whatsnew for further upgrade steps.

1.3.4 License Activation
License activation involves loading a valid license file.

Step 1: Get your license file

• If you already have a license file continue with step 2.

• To get a trial license, visit http://www.s-pact.com/peaxact. Once you have received
your license file continue with step 2.

• For purchased licenses, licenses activation associates the use of PEAXACT with des-
ignated computers by means of a Host ID. The Host ID is a MAC address or the serial
number of volume c of the computer PEAXACT is installed on.

• From the Windows start menu select
Programs > PEAXACT 4 > Activate PEAXACT Application Server

• Wait until the License Activation Dialog is displayed

• Copy the Host ID from the dialog window and send it to support@s-pact.de

• Click Cancel for now. Once you’ve received your license file continue with step 2.

http://www.s-pact.com/peaxact/runtime
http://www.s-pact.com/peaxact/whatsnew
http://www.s-pact.com/peaxact
mailto:support@s-pact.de
mailto:support@s-pact.de

1 - QUICK START 7

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

Note: You can also type getmac at the command prompt and use the first MAC ad-
dress as Host ID.

Step 2: Activate license

• Click the Windows start menu and select
Programs > PEAXACT 4 > Activate PEAXACT Application Server

• Wait until the License Activation Dialog is displayed

License Activation Dialog

(1) License selection
(2) Status of activation

(3) Additional license information
(4) Apply and close

• Choose Import License… from the list (1) to browse for a valid license file. If the li-
cense is valid the license file is copied to the license directory.

• Once a valid license is selected, you can click on the License Info button (3) to learn
more about the license or on the OK button (4) to accept the selection.

Per-machine license vs. per-user license
If you perform the activation with administrator privileges, licenses will be acti-
vated per-machine, i.e. for all Windows users. Otherwise, licenses will be activated
per-user, i.e. for the logged-on user. Per-machine licenses take precedence over
per-user licenses. Once a per-machine license is activated the License Activation
Dialog gets locked for regular users.

1

2

3 4

1 - QUICK START 8

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

1.4 Before You Start
Before you access the Application Server for the first time you should test whether everything
is installed correctly by running a diagnosis program. Click the Windows start menu and se-
lect Programs > PEAXACT 4 > Diagnosis Tool for PEAXACT Application Server.

The diagnosis program performs some tests and suggests possible solutions in case of prob-
lems. You should fix all problems before you proceed. Typical problems include:

• MATLAB Compiler Runtime (MCR) is not installed correctly

• Required DLL files are not registered correctly

• Platform-dependent problems (e.g. running 32-bit software instead of 64-bit)

You could run the diagnosis program at any time to check whether the interface still works
correctly and to reveal possible errors.

Note: During the diagnosis, you may be prompted to activate a license.

2 - APPLICATION PROGRAMMING INTERFACE (API) 9

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

2 APPLICATION PROGRAMMING

INTERFACE (API)

2.1 .NET API
The .NET API is a set of classes contained in a design-time assembly you would compile and
link against when building your own managed assemblies. Before you can use it, you need to
reference the assembly in you Visual Studio project. In Visual Studio, right-click on a project,
for example, and click "Add References...". The assembly file is located at

<INSTALLPATH>\DLL\PeaxactApplicationServer.dll

Note: The PEAXACT Application Server requires Microsoft .NET Framework 4.5 or
later to be installed on your computer.

Backward Compatibility

New versions of the .NET API will be backward compatible. Therefore, it is highly recom-
mended that you do not bind your application to a specific version of the Application Server
assembly but instead bind dynamically to the newest version installed on the target com-
puter. See Section 2.3.3 for a programming example.

Support for Asynchronous Analyses

The .NET API provides methods to run analyses asynchronously in a background thread.
However, note that analyses are executed internally by the MATLAB Runtime which is single-
threaded, i.e. if you run multiple asynchronous operations in parallel they will still be executed
one after another.

Exception Handling

The .NET API throws exceptions of predefined .NET Framework exception types with specific
error messages. Use exception handling code (try/catch blocks) appropriately for all method
calls.

2.1.1 Namespaces
The .NET API contains two namespaces, both providing types with identical names and sim-
ilar functionality.

Types of the S_PACT.PEAXACT-namespace are type-safe. Use these types in your Visual
Studio projects.

2 - APPLICATION PROGRAMMING INTERFACE (API) 10

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

Types of the S_PACT.PEAXACT.Legacy-namespace are COM-visible. These types are not
type-safe for higher compatibility with older COM clients such as VBScript. Never use these
legacy-types in your Visual Studio projects; they are meant to be used by COM clients only.

2.1.2 ApplicationServer Class
The ApplicationServer class is the root class of the API. It provides methods to Start() and
Stop() the server. Once started you can create Session objects with the NewSession() or
LoadSession() methods. A Session is a container for models and data sets, representing an
isolated environment where analyses execute.

Constructor

The ApplicationServer class has no public constructor. The class implements a singleton pat-
tern with a static property Instance.

Properties

Instance : ApplicationServer
A static property holding a singleton instance of the ApplicationServer class.

IsStarted : bool
A flag indicating whether the Application Server has been started.

Methods

Start()
Start(StartupOptions options) : void

Starts the Application Server. The method does nothing if the server has been
started already.
options: Startup options. (null = defaults)

Stop() : void
Stops the Application Server. The method waits until all sessions are idle before it
returns. You should always call this method explicitly before exiting your applica-
tion to properly clean up any unmanaged resources.

NewSession() : Session
Creates a new Session instance.

LoadSession(string filename) : Session
Creates a new Session instance by loading a PEAXACT session file.
filename: Filename of a PEAXACT session (extension PXS).

2 - APPLICATION PROGRAMMING INTERFACE (API) 11

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

2.1.3 StartOptions Class
The StartOptions class provides optional settings to control the startup behavior of the Ap-
plication Server.

Constructor

StartOptions()
Initializes a new instance of the StartOptions class with default properties.

Properties

LicenseFilename : string
Filename of a PEAXACT license file (extension LIC). (null or empty = detect auto-
matically; "interactive" = show file dialog if required)
In case of auto-detection, a license file is searched for in the Windows Registry at:
HKEY_LOCAL_MACHINE\S-PACT\PEAXACT Application Server 4\LicenseSource
and:
HKEY_CURRENT_USER\S-PACT\PEAXACT Application Server 4\LicenseSource

LicensePassword : string
Password to unlock a protected license file. The filename of a protected license
must be specified explicitly by LicenseFilename. Protected license files are only
available upon special request.

LogFilename : string
Filename of a log file. (null or empty = no logging; "default" = default filename)

2.1.4 Session Class
A Session is a container for models and data sets, representing an isolated environment
where analyses execute.

Constructor

The Session class has no public constructor. Instances of this class can only be created using
the NewSession() or LoadSession() methods of the ApplicationServer class.

Properties

DataSetUris : string[]
Gets URIs of added data sets.

ModelFilenames : string[]
Gets filenames of added models.

2 - APPLICATION PROGRAMMING INTERFACE (API) 12

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

IntegrationRangeNames : string[]
Gets names of integration ranges from all added models in the order models were
added to the session.

ComponentNames : string[]
Gets names of non-empty hard model components from all added models in the
order models were added to the session.

CalibratedFeatureNames : string[]
Gets names of calibrated features from all added models in the order models were
added to the session.

Methods

Dispose() : void
Frees the native resources associated with this object.

AddDataSet(string uri) : void
AddDataSet(string uri, bool removeExisting) : void
AddDataSet(string uri, bool removeExisting, double[] x, double[] y, params object[] z)

Add a data set to the session.
uri: URI of a data set to be added to the session.
removeExisting: Flag indicating whether to remove all other data sets from the
session before adding the new one. This is useful for single-shot analyses.
x: Array of x-values to be used instead of values read from the data file.
y: Array of y-values to be used instead of values read from the data file.
z: Optional parameter/value pairs representing additional data set features. The
parameter must be a string; the value must be of type double.

AddModel(string filename) : void
Add a model to the session.
filename: Filename of a PEAXACT model (extension PXM) to be added to the ses-
sion. It can also be the name of a PEAXACT session file (extension PXS) containing
any number of models to be added.

RemoveDataSet(int dataSetIndex) : void
RemoveDataSet(string dataSetUri) : void

Removes a data set from the session.
dataSetIndex: The one-based index of the data set to be removed from the ses-
sion.
dataSetUri: The URI of the data set to be removed from the session.

RemoveModel(int modelIndex) : void
RemoveModel(string modelFilename) : void

Removes a model from the session.
modelIndex: The one-based index of the model to be removed from the session.
modelFilename: The filename of the model to be removed from the session.

2 - APPLICATION PROGRAMMING INTERFACE (API) 13

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

GetModelInfo(int modelIndex) : ModelInfo
GetModelInfo(string modelFilename) : ModelInfo

Gets information about a model.
modelIndex: The one-based index of the model in the session.
modelFilename: The filename of a model in the session.

AnalysisPeakPicking(int dataSetIndex) : PeakPickingResults
AnalysisPeakPicking(string dataSetUri) : PeakPickingResults
AnalysisPeakPicking(int dataSetIndex, double minPeakHeight) : PeakPickingResults
AnalysisPeakPicking(string dataSetUri, double minPeakHeight) : PeakPickingResults

Performs peak picking for a single data set using pretreatments of the first added
model (if any).
dataSetIndex: The one-based index of a data set in the session.
dataSetUri: The URI of a data set in the session.
minPeakHeight: Minimum height for peak detection.

AnalysisIntegration() : IntegrationResults
AnalysisIntegration(int[] integrationRangeIndices) : IntegrationResults
AnalysisIntegration(string[] integrationRangeNames) : IntegrationResults

Performs peak integration for all added data sets using all added integration mod-
els.
integrationRangeIndices: One-based indices of integration ranges (as in
IntegrationRangeNames) to be considered for the analysis.
integrationRangeNames: Names of integration ranges (as in
IntegrationRangeNames) to be considered for the analysis.

AnalysisIntegrationAsync(int[] integrationRangeIndices, CancellationToken cancella-
tionToken, IProgress<int> progress) : Task<IntegrationResults>
AnalysisIntegrationAsync(string[] integrationRangeNames, CancellationToken cancel-
lationToken, IProgress<int> progress) : Task<IntegrationResults>

Asynchronously performs peak integration for all added data sets using all added
integration models.
integrationRangeIndices: One-based indices of integration ranges (as in
IntegrationRangeNames) to be considered for the analysis.
integrationRangeNames: Names of integration ranges (as in
IntegrationRangeNames) to be considered for the analysis.
cancellationToken: The token to monitor for cancellation requests.
progress: The provider for progress updates.

AnalysisComponentFitting() : ComponentFittingResults
AnalysisComponentFitting(int[] componentIndices) : ComponentFittingResults
AnalysisComponentFitting(string[] componentNames) : ComponentFittingResults

Performs component fitting for all added data sets using all added hard models.
componentIndices: One-based indices of hard model components (as in
ComponentNames) to be considered for the analysis.
componentNames: Names of hard model components (as in ComponentNames) to
be considered for the analysis.

2 - APPLICATION PROGRAMMING INTERFACE (API) 14

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

AnalysisComponentFittingAsync(int[] componentIndices, CancellationToken cancella-
tionToken, IProgress<int> progress) : Task<ComponentFittingResults>
AnalysisComponentFittingAsync(string[] componentNames, CancellationToken cancel-
lationToken, IProgress<int> progress) : Task<ComponentFittingResults>

Asynchronously performs component fitting for all added data sets using all
added hard models.
componentIndices: One-based indices of hard model components (as in
ComponentNames) to be considered for the analysis.
componentNames: Names of hard model components (as in ComponentNames) to
be considered for the analysis.
cancellationToken: The token to monitor for cancellation requests.
progress: The provider for progress updates.

AnalysisPrediction() : PredictionResults
AnalysisPrediction(int[] featureIndices) : PredictionResults
AnalysisPrediction(string[] featureNames) : PredictionResults

Performs feature prediction for all added data sets using all added calibration
models.
featureIndices: One-based indices of calibrated features (as in
CalibratedFeatureNames) to be considered for the analysis.
featureNames: Names of calibrated features (as in CalibratedFeatureNames) to be
considered for the analysis.

AnalysisPredictionAsync(int[] featureIndices, CancellationToken cancellationToken,
IProgress<int> progress) : Task<PredictionResults>
AnalysisComponentFittingAsync(string[] featureNames, CancellationToken cancella-
tionToken, IProgress<int> progress) : Task<PredictionResults>

Asynchronously performs feature prediction for all added data sets using all added
calibration models.
featureIndices: One-based indices of calibrated features (as in
CalibratedFeatureNames) to be considered for the analysis.
featureNames: Names of calibrated features (as in CalibratedFeatureNames) to be
considered for the analysis.
cancellationToken: The token to monitor for cancellation requests.
progress: The provider for progress updates.

AnalysisMcr(int numComponents) : McrResults
AnalysisMcr(int numComponents, McrOptions options) : McrResults

Performs MCR-ALS for all added data sets using pretreatments of the first added
model (if any).
numComponents: Number of unknown components to be identified from the
data.
options: Additional options for the algorithm.

AnalysisMcrAsync(int numComponents, McrOptions options, CancellationToken cancel-
lationToken, IProgress<int> progress) : Task<McrResults>

Asynchronously performs MCR-ALS for all added data sets using pretreatments
of the first added model (if any).

2 - APPLICATION PROGRAMMING INTERFACE (API) 15

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

numComponents: Number of unknown components to be identified from the
data.
options: Additional options for the algorithm.
cancellationToken: The token to monitor for cancellation requests.
progress: The provider for progress updates.

AnalysisHmfa(int numComponents) : HmfaResults
AnalysisHmfa(int numComponents, HmfaOptions options) : HmfaResults

Performs HMFA for all added data sets using the first added model.
numComponents: Number of unknown components to be identified from the
data.
options: Additional options for the algorithm.

AnalysisHmfaAsync(int numComponents, HmfaOptions options, CancellationToken
cancellationToken, IProgress<int> progress) : Task<HmfaResults>

Asynchronously performs HMFA for all added data sets using the first added
model.
numComponents: Number of unknown components to be identified from the
data.
options: Additional options for the algorithm.
cancellationToken: The token to monitor for cancellation requests.
progress: The provider for progress updates.

2.1.5 McrOptions Class
The McrOptions class provides optional settings for the MCR-ALS analysis.

Constructor

McrOptions()
Initializes a new instance of the McrOptions class with default properties.

Properties

C0 : double[,]
Optional 2D array of initial concentrations. Rows correspond to data sets, columns
correspond to components.
If C0 is null, concentrations are initialized with previous results (if available).
If C0 is an empty Array, concentrations are initialized implicitly (reset).

ToleranceRmse : double
Criterion for stopping the MCR-ALS algorithm when progress between iterations
drops below the tolerance (default = 1e-5).

MaxIterations : int
Criterion for stopping the MCR-ALS algorithm after a maximum number of itera-
tions (default = 100).

2 - APPLICATION PROGRAMMING INTERFACE (API) 16

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

MaxUnsuccessfulAttempts : int
Criterion for stopping the MCR-ALS algorithm after a maximum number of unsuc-
cessful iterations (default = 20).

IsNonnegativeC : double
Enable or disable the non-negativity constraint for component concentrations
(default = false).

IsNonnegativeS : double
Enable or disable the non-negativity constraint for component spectra (default =
false).

IsUnimodalC : double
Enable or disable the unimodality constraint for component concentrations (de-
fault = false).

IsClosureC : bool
Enable or disable the closure constraint for component concentrations (default =
false).

2.1.6 HmfaOptions Class
The HmfaOptions class provides optional settings for the HMFA analysis.

Constructor

HmfaOptions()
Initializes a new instance of the HmfaOptions class with default properties.

Properties

IsClosureC : bool
Enable or disable the closure constraint for component concentrations (default =
false).

2.1.7 ModelInfo Struct
The ModelInfo is a read-only structure returned by Session.GetModelInfo() providing infor-
mation about a model. In particular, it is useful to determine the kinds of analysis a model can
be used for. Each model can be used for Session.AnalysisPeakPicking() or
Session.AnalysisMcr(). A model with non-empty IntegrationRangeNames is suitable for
Session.AnalysisIntegration(), a model with non-empty ComponentNames is suitable for
Session.AnalysisComponentFitting() or Session.AnalysisHmfa(), and a model with non-
empty CalibratedFeatureNames is suitable for Session.AnalysisPrediction().

2 - APPLICATION PROGRAMMING INTERFACE (API) 17

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

Properties

Filename : string
Filename of the model.

Description : string
Description of the model as provided by the creator of the model.

IntegrationRangeNames : string[]
Names of integration ranges contained in the model.

ComponentNames : string[]
Names of hard model components contained in the model.

CalibratedFeatureNames : string[]
Names of calibrated features contained in the model.

2.1.8 PeakPickingResults Struct
The PeakPickingResults is a read-only structure returned by Session.AnalysisPeakPicking().

Properties

DataSetUri : string
URI of the analyzed data set.

MinimumPeakHeight : double
Minimum height of peaks used for the analysis. This is either the user-specified
input value to AnalysisPeakPicking() or an auto-detected value.

PeakPositionIndices : double[]
One-based X-indices of found peaks.

PeakPositions : double[]
X-values of found peaks.

PeakIntensities : double[]
Y-values of found peaks.

XData : double[]
X-values of the signal (after pre-treatments if any) used for the analysis.

YData : double[]
Y-values of the signal (after pre-treatments if any) used for the analysis.

2.1.9 IntegrationResults Struct
The IntegrationResults is a read-only structure returned by Session.AnalysisIntegration().

2 - APPLICATION PROGRAMMING INTERFACE (API) 18

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

Properties

DataSetUris : string[]
URIs of the analyzed data sets.

IntegrationRangeNames : string[]
Names of integration ranges used for the analysis.

IntegrationRangeIndices : int[]
One-based indices of integration ranges used for the analysis.

Areas : double[,]
2D array of calculated peak areas. Rows correspond to data sets; columns corre-
spond to integration ranges.

2.1.10 ComponentFittingResults Struct
The ComponentFittingResults is a read-only structure returned by
Session.AnalysisComponentFitting().

Properties

DataSetUris : string[]
URIs of the analyzed data sets.

ComponentNames : string[]
Names of hard model components used for the analysis.

ComponentIndices : int[]
One-based indices of hard model components used for the analysis.

Weights : double[,]
2D array of calculated component weights. Rows correspond to data sets; col-
umns correspond to hard model components.

2.1.11 PredictionResults Struct
The PredictionResults is a read-only structure returned by Session.AnalysisPrediction().

Properties

DataSetUris : string[]
URIs of the analyzed data sets.

FeatureNames : string[]
Names of calibrated features used for the analysis.

FeatureIndices : int[]
One-based indices of calibrated features used for the analysis.

2 - APPLICATION PROGRAMMING INTERFACE (API) 19

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

Values : double[,]
2D array of calculated feature values. Rows correspond to data sets; columns cor-
respond to calibrated features.

RmsResiduals : double[,]
2D array of root mean square (RMS) spectral residuals. Rows correspond to data
sets; columns correspond to calibrated features.
The array has identical columns for features predicted by the same Hard Model.
The array contains NaN elements for features predicted by Integration Models.

RmsResidualsOutlierPValue : double[,]
2D array of probability values (p-values) for each spectral residual being an outlier.
Rows correspond to data sets; columns correspond to calibrated features.
The array has identical columns for features predicted by the same Hard Model.
The array contains NaN elements for features predicted by Integration Models.

MahalanobisDistance : double[,]
2D array of Mahalanobis distances of analyzed samples w.r.t. training samples.
Rows correspond to data sets; columns correspond to calibrated features.
The array contains NaN elements for features not predicted by PLS Models.

MahalanobisDistanceOutlierPValue : double[,]
2D array of probability values (p-values) for each Mahalanobis distance being an
outlier. Rows correspond to data sets; columns correspond to calibrated features.
The array contains NaN elements for features not predicted by PLS Models.

2.1.12 McrResults Struct
The McrResults is a read-only structure returned by Session.AnalysisMcr().

Properties

DataSetUris : string[]
URIs of the analyzed data sets.

ComponentNames : string[]
Automatically generated names for each identified component.

S : double[,]
Spectral intensities (y-values) of identified components. Rows correspond to spec-
tral x-values; columns correspond to components.

C : double[,]
Concentrations of identified components. Rows correspond to data sets; columns
correspond to components.

RmsResiduals : double[]
Root mean square (RMS) spectral residuals for each data set.
Residuals are differences between measured and reconstructed signal.

2 - APPLICATION PROGRAMMING INTERFACE (API) 20

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

R2 : double
Fraction of variance of the measured signal explained by the reconstructed signal.

XData : double[]
X-values of the signal (after pre-treatments if any) used for the analysis.

2.1.13 HmfaResults Struct
The HmfaResults is a read-only structure returned by Session.AnalysisHmfa().

Properties

DataSetUris : string[]
URIs of the analyzed data sets.

ComponentNames : string[]
Names of pre-defined components (if any) and automatically generated names
for each identified component (if any).

S : double[,]
Spectral intensities (y-values) of identified components. Rows correspond to spec-
tral x-values; columns correspond to components.

C : double[,]
Concentrations of pre-defined and identified components. Rows correspond to
data sets; columns correspond to components.

RmsResiduals : double[]
Root mean square (RMS) spectral residuals for each data set.
Residuals are differences between measured and reconstructed signal.

R2 : double
Fraction of variance of the measured signal explained by the reconstructed signal.

XData : double[]
X-values of the signal (after pre-treatments if any) used for the analysis.

2.2 COM API
The COM API is a set of classes contained in a COM-visible assembly you would use in scripts
and applications that are COM-compliant, e.g. VBScript, Visual Basic, Excel, or LabVIEW. Be-
fore you can use it, you need to register the assembly using the Assembly Registration Tool
(Regasm.exe) of the Microsoft .NET Framework 4.5. The assembly file is located at

<INSTALLPATH>\DLL\PeaxactApplicationServer.dll

Note: The PEAXACT Application Server requires Microsoft .NET Framework 4.5 or
later to be installed on your computer.
Note: The assembly is registered automatically by the PEAXACT Installer.

2 - APPLICATION PROGRAMMING INTERFACE (API) 21

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

ProgID

The COM API exposes the IApplicationServer class interface and the corresponding
ApplicationServer class which is the only class you can create objects from. The
ApplicationServer class can be referenced by its ProgId.

Version-specific ProgId: PEAXACT.ApplicationServer.4
Version-independent ProgId: PEAXACT.ApplicationServer

In Visual Basic, e.g., you would create a new instance of the ApplicationServer class with

Set pxAppServer4 = CreateObject("PEAXACT.ApplicationServer.4")

Set pxAppServer = CreateObject("PEAXACT.ApplicationServer")

Backward Compatibility

New versions of the COM API will be backward compatible. Therefore, it is highly recom-
mended that you do not bind your application to a specific version of the Application Server
DLL but instead bind dynamically to the newest version installed on the target computer. You
can do this by referencing the version-independent ProgId.

Dynamic Binding vs. Static Binding

The Application Server DLL only allows for dynamic binding / late binding to assure that your
application doesn’t break when new methods or properties are added to the API in the future.

Exception Handling

The COM API throws exceptions with specific error messages. Use exception handling code
appropriately for all method calls.

2.2.1 ApplicationServer Class
The ApplicationServer class is the root class of the API. It provides methods to Start() and
Stop() the server. Once started you can create Session objects with the NewSession() or
LoadSession() methods. A Session is a container for models and data sets, representing an
isolated environment where analyses execute.

Constructor

The ApplicationServer class exposes a public constructor with no arguments. Although this
would enable you to create multiple class instances, internally all instances share the same
workspace. Therefore, it is recommended that you only create a single instance of the
ApplicationServer class in your application. The ProgID of the ApplicationServer class is
PEAXACT.ApplicationServer.

2 - APPLICATION PROGRAMMING INTERFACE (API) 22

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

Properties

IsStarted : bool
A flag indicating whether the Application Server has been started.

Methods

Start(string logFilename, string licenseFilename) : void
Starts the Application Server. The method does nothing if the server has been
started already.
logFilename: Filename of a log file. (null or empty = no logging; "default" = de-
fault filename)
licenseFilename: Filename of a PEAXACT license file (extension LIC). (null or
empty = detect automatically; "interactive" = show file dialog if required)

Stop() : void
Stops the Application Server. You should always call this method explicitly before
exiting your application to properly clean up resources.

NewSession() : Session
Creates a new Session instance.

LoadSession(string filename) : Session
Creates a new Session instance by loading a PEAXACT session file.
filename: Filename of a PEAXACT session (extension PXS).

2.2.2 Session Class
A Session is a container for models and data sets, representing an isolated environment
where analyses execute.

Constructor

The Session class has no public constructor. Instances of this class can only be created using
the NewSession() or LoadSession() methods of the ApplicationServer class.

Properties

DataSetUris : string[]
Gets URIs of added data sets.

ModelFilenames : string[]
Gets filenames of added models.

IntegrationRangeNames : string[]
Gets names of integration ranges from all added models in the order models were
added to the session.

2 - APPLICATION PROGRAMMING INTERFACE (API) 23

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

ComponentNames : string[]
Gets names of non-empty hard model components from all added models in the
order models were added to the session.

CalibratedFeatureNames : string[]
Gets names of calibrated features from all added models in the order models were
added to the session.

Methods

Dispose() : void
Frees the native resources associated with this object.

AddDataSet(string uri, bool removeExisting, object x, object y, params object[] z) : void
Add a data set to the session.
uri: URI of a data set to be added to the session.
removeExisting: Flag indicating whether to remove all other data sets from the
session before adding the new one. This is useful for single-shot analyses.
x: Numeric array of x-values to be used instead of values read from the data file.
y: Numeric array of y-values to be used instead of values read from the data file.
z: Optional parameter/value pairs representing additional data set features. The
parameter must be a string; the value must be of type double.

AddModel(string filename) : void
Add a model to the session.
filename: Filename of a PEAXACT model (extension PXM) to be added to the ses-
sion. It can also be the name of a PEAXACT session file (extension PXS) containing
any number of models to be added.

RemoveDataSet(object dataSetIdentifier) : void
Removes a data set from the session.
dataSetIdentifier: The one-based index (integer) or the URI (string) of the data
set to be removed from the session.

RemoveModel(object modelIdentifier) : void
Removes a model from the session.
modelIdentifier: The one-based index (integer) or the filename (string) of the
model to be removed from the session.

GetModelInfo(object modelIdentifier) : ModelInfo
Gets information about a model.
modelIdentifier: The one-based index (integer) or the filename (string) of the
model in the session.

AnalysisPeakPicking(object dataSetId, object minPeakHeight) : PeakPickingResults
Performs peak picking for a single data set using pretreatments of the first added
model (if any).
dataSetId: The one-based index (integer) or the URI (string) of a data set in the
session.

2 - APPLICATION PROGRAMMING INTERFACE (API) 24

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

minPeakHeight: Minimum height for peak detection. (null or empty = detect au-
tomatically)

AnalysisIntegration(object integrationRangeIdentifier) : IntegrationResults
Performs peak integration for all added data sets using all added integration mod-
els.
integrationRangeIdentifier: One-based indices (integer array) or names (string
array) of integration ranges (as in IntegrationRangeNames) to be considered for the
analysis.

AnalysisComponentFitting(object componentIdentifier) : ComponentFittingResults
Performs component fitting for all added data sets using all added hard models.
componentIdentifier: One-based indices (integer array) or names (string array)
of hard model components (as in ComponentNames) to be considered for the analy-
sis.

AnalysisPrediction(object featureIdentifier) : PredictionResults
Performs feature prediction for all added data sets using all added calibration
models.
featureIdentifier: One-based indices (integer array) or names (string array) of cal-
ibrated features (as in CalibratedFeatureNames) to be considered for the analysis.

AnalysisMcr(int numComponents, params object[] options) : McrResults
Performs MCR-ALS for all added data sets using pretreatments of the first added
model (if any).
numComponents: Number of unknown components to be identified from the
data.
options: Additional options for the algorithm as parameter/value-pairs. The pa-
rameter can be any of the following strings: C0, ToleranceRmse, MaxIterations,
MaxUnsuccessfulAttempts, IsNonnegativeC, IsNonnegativeS, IsUnimodalC,
IsClosureC. The meaning of these parameters and appropriate values are identical
to the .NET API as documented in 2.1.5.

AnalysisHmfa(int numComponents, params object[] options) : HmfaResults
Performs HMFA for all added data sets using the first added model.
numComponents: Number of unknown components to be identified from the
data.
options: Additional options for the algorithm as parameter/value-pairs. The pa-
rameter can be any of the following strings: IsClosureC. The meaning of these pa-
rameters and appropriate values are identical to the .NET API as documented in
2.1.6.

2.2.3 ModelInfo Struct
See Section 2.1.7

2 - APPLICATION PROGRAMMING INTERFACE (API) 25

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

2.2.4 PeakPickingResults Struct
See Section 2.1.8

2.2.5 IntegrationResults Struct
See Section 2.1.9

2.2.6 ComponentFittingResults Struct
See Section 2.1.10

2.2.7 PredictionResults Struct
See Section 2.1.11

2.2.8 McrResults Struct
See Section 2.1.12

2.2.9 HmfaResults Struct
See Section 2.1.13

2.3 Programming Examples

2.3.1 Using the .NET API in C#
This example demonstrates how to use the .NET API in C#. The program uses a calibrated
model to predict features from a measured sample.

Note: You have to reference the PeaxactApplicationServer.dll assembly first.

using System;

using S_PACT.PEAXACT;

namespace Examples

{

 class PredictionExample

 {

 Session pxSession;

 static void Main()

 {

 PredictionExample example = new PredictionExample();

 example.Run();

 Console.WriteLine("Press any key to continue.");

2 - APPLICATION PROGRAMMING INTERFACE (API) 26

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

 Console.ReadKey();

 }

 private void Run()

 {

 // Start the Application Server

 StartOptions startOptions = new StartOptions() {

 LicenseFilename = @"c:\license.lic",

 LogFilename = @"c:\appserver.log" };

 ApplicationServer.Instance.Start(startOptions);

 // Create a new session

 pxSession = ApplicationServer.Instance.NewSession();

 // Add model and data, then run the analysis

 pxSession.AddModel(@"c:\user\model.pxm");

 LoadData();

 PredictFeatures();

 // Stop the Application Server (clean up unmanaged resources)

 ApplicationServer.Instance.Stop();

 }

 private void LoadData()

 {

 // This function demonstrates how to add data sets with xy-data

 int nx = 800; // number of data points

 double[] xData = new double[nx]; // vector of x-data, e.g. wavenumbers

 double[] yData = new double[nx]; // vector of y-data, e.g. intensities

 // populate xData and yData

 // ...

 // Add data set. The URI can be arbitrary if xy-data is provided.

 pxSession.AddDataSet("dummy.xyz", true, xData, yData);

 }

 private void PredictFeatures()

 {

 // Run the analysis for all calibrated features

 PredictionResults r = pxSession.AnalysisPrediction();

 // Display results

 for (int j = 0; j < r.FeatureNames.Length; j++)

 {

 Console.WriteLine("{0} = {1}", r.FeatureNames[j], r.Values[0, j]);

 }

 }

 }

}

2.3.2 Using the COM API in VB Script
This example demonstrates how to call the PEAXACT Application Server from Visual Basic
Script (VBS). VBS only supports the COM API. The script uses a model for integration of peak
areas of two chromatograms and displays results.

Note: If you installed the 32-bit version of the Application Server on a 64-bit OS,
you would need to run the script with a 32-bit version of wscript.exe, which can be
found at %windir%\SysWOW64\wscript.exe

' Create instance of ApplicationServer

Set pxAppServer = CreateObject("PEAXACT.ApplicationServer")

2 - APPLICATION PROGRAMMING INTERFACE (API) 27

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

' Start the server with a default log file and interactive license activation

pxAppServer.Start "default", "interactive"

Set pxSession = pxAppServer.NewSession

' Add one model and multiple data sets

pxSession.AddModel "c:\model\file.pxm"

pxSession.AddDataSet "c:\data\chromatogram.csv#1", false, null, null

pxSession.AddDataSet "c:\data\chromatogram.csv#2", false, null, null

' Integrate peak areas of "Range 1" according to model specifications

Set results = pxSession.AnalysisIntegration("Range 1")

' Display results

For i = 0 To UBound(results.DataSetUris)

 ' Note: Indexing into class property arrays is not directly possible in VBS

 uris = results.DataSetUris

 areas = results.Areas

 Wscript.Echo "Peak area (Range 1) for sample " & uris(i) & " = " areas(i, 0)

Next

‘ Stop the server

pxAppServer.Stop

2.3.3 Dynamically bind to future versions of the
Application Server assembly (.NET API)

This example demonstrates how you could make your.NET application independent of a spe-
cific version of the Application Server and instead bind to the newest Application Server as-
sembly installed on the target computer. This is possible because new versions of the .NET
API will be backward compatible.

Note: It is highly recommended NOT to bind to a specific version of the Application
Server assembly because you would need to upgrade your application each time a
new PEAXACT version gets released.

using Microsoft.Win32;

using S_PACT.PEAXACT;

using System;

using System.IO;

using System.Reflection;

namespace Examples

{

 class DynamicBindingExample

 {

 static DynamicBindingExample()

 {

 // Add assembly resolver within a static constructor

 AppDomain.CurrentDomain.AssemblyResolve +=

 new ResolveEventHandler(MyResolveEventHandler);

 }

 static void Main(string[] args)

 {

 // Start the Application Server, resolve assembly if necessary.

 ApplicationServer.Instance.Start();

 }

2 - APPLICATION PROGRAMMING INTERFACE (API) 28

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

 private static Assembly MyResolveEventHandler(object s, ResolveEventArgs e)

 {

 // Return if assembly has been loaded already

 Assembly[] loadedAssemblies = AppDomain.CurrentDomain.GetAssemblies();

 foreach (Assembly assembly in loadedAssemblies)

 {

 if (assembly.FullName.StartsWith(e.Name))

 return assembly;

 }

 if (e.Name.StartsWith("PeaxactApplicationServer"))

 {

 // Search registry for the highest installed version

 RegistryKey key, subKey;

 try

 {

 key = Registry.LocalMachine.OpenSubKey(@"SOFTWARE\S-PACT");

 if (key == null) return null;

 }

 catch

 {

 return null;

 }

 UInt32 version = 0, maxVersion = 0;

 String installPath = "", assemblyPath = "", validAssemblyPath = "";

 foreach (String keyName in key.GetSubKeyNames())

 {

 if (!keyName.StartsWith("PEAXACT Application Server"))

 continue;

 try

 {

 version = UInt32.Parse(keyName.Substring(26));

 if (version <= maxVersion) continue;

 maxVersion = version;

 subKey = key.OpenSubKey(keyName);

 if (subKey == null) continue;

 installPath= subKey.GetValue("InstallPath", "").ToString();

 if (installPath == "") continue;

 assemblyPath = Path.Combine(installPath,

 "PeaxactApplicationServer.dll");

 if (File.Exists(assemblyPath))

 validAssemblyPath = assemblyPath;

 }

 catch { }

 }

 // Load assembly from installation path

 if (validAssemblyPath != "")

 return Assembly.LoadFrom(validAssemblyPath);

 }

 return null;

 }

 }

}

3 - CUSTOM INTERFACES 29

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

3 CUSTOM INTERFACES

3.1 OPUS Process

Note: A video on how to integrate the PEAXACT Application Server with OPUS
Process is published on the PEAXACT Blog.

3.1.1 Prerequisites

Software Requirements

• OPUS 6.5 or higher

• PEAXACT 4 or higher. A 32-bit installation is required!

OPUS 7 Workaround

The following workaround is necessary for OPUS version 7 to work with PEAXACT:

1) Open the Windows Explorer and open the OPUS installation directory
2) Rename file Calo.dll to Calo.dll_hidden or any other name, such that the file won't be

found be OPUS any more

Please note that this workaround disables OPUS support for Unscrambler.

Additional Files

These instructions refer to a special OPUS script file named PEAXACTComponentAnalysis.obs.
The file is used as a placeholder during set-up of an OPUS PROCESS scenario and does noth-
ing so far. The file is located at <INSTALLPATH>\DLL\OPUS.

3.1.2 OPUS Configuration
1) Run the diagnosis program first to test whether the PEAXACT Application Server is in-

stalled and registered correctly.
2) Configure a new OPUS PROCESS scenario file (.obs) with the OPUS scenario browser

a) Each measurement point requires a "No Evaluation" data channel for triggering the
measurement (must be the first data channel in each case).

b) Add data channels with data evaluation by script PEAXACTComponentAnalysis.obs
3) Modify the scenario script according to instructions in the next Section
4) Run the process script in OPUS.

3 - CUSTOM INTERFACES 30

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

3.1.3 Modifying OPUS scenario file

Important Notes

• Set-up the whole OPUS PROCESS scenario first using the OPUS scenario browser.

• Run and test the scenario before making manual modifications to the scenario file.

• Once the scenario script is modified manually, the scenario should not be changed
with the OPUS scenario browser anymore because this would overwrite all manual
modifications. Again, make sure to finish all steps in the scenario browser first.

• Use the OPUS script editor (Menu File > Open > *.obs) to modify the scenario script
as follows below. If you copy and paste text from a PDF version of this document, copy
each page separately because this will preserve line breaks and also prevents from
copying headers and footers.

At the beginning of the script, after Option Explicit add:
' Added by S-PACT %%

Dim pxAppServer, pxSession

' %%

At the beginning of sub-procedure Form_OnLoad() add:
' Added by S-PACT %%

MsgBox "Starting PEAXACT Application Server..."

Dim logFile, licenseFile

Set pxAppServer = CreateObject("PEAXACT.ApplicationServer")

logFile = ""

licenseFile = "interactive"

pxAppServer.Stop

pxAppServer.Start logFile, licenseFile

Set pxSession = pxAppServer.NewSession

pxSession.AddModel "<modelFilename>"

' %%

Customize <modelFilename> to load your models

• Substitute <modelFilename> with the full path and filename of a PEAXACT model. For
instance, the line would then read:
pxSession.AddModel "C:\models\cyclohexaneModel.pxm"

• If you want to add more models, duplicate the pxSession.AddModel line.

At the beginning of sub-procedure Form_OnUnload() add:
' Added by S-PACT %%

pxAppServer.Stop

' %%

3 - CUSTOM INTERFACES 31

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

At the very end of the script, add:
' Added by S-PACT %%

Function PEAXACTAnalysis(ByVal typeOfAnalysis, ByVal block, ByVal Id)

 Dim vntResult, iPoint, nPoints, firstX, lastX, path, file, URI

 Dim xData(), yData(0), resultObj, result

 ' set some options and read data

 vntResult = Form.OpusRequest("BINARY")

 vntResult = Form.OpusRequest("FLOAT_MODE")

 vntResult = Form.OpusRequest("FLOATCONV_MODE ON")

 vntResult = Form.OpusRequest("DATA_POINTS")

 vntResult = Form.OpusRequest("READ_FROM_BLOCK " & block)

 vntResult = Form.OpusRequest("READ_PARAMETER PAT")

 path = split(vntResult, chr(10))(1)

 vntResult = Form.OpusRequest("READ_PARAMETER NAM")

 file = split(vntResult, chr(10))(1)

 vntResult = Form.OpusRequest("READ_PARAMETER NPT")

 nPoints = split(vntResult, chr(10))(1)

 vntResult = Form.OpusRequest("READ_PARAMETER FXV")

 firstX = split(vntResult, chr(10))(1)

 vntResult = Form.OpusRequest("READ_PARAMETER LXV")

 lastX = split(vntResult, chr(10))(1)

 ' create xData

 ReDim xData(nPoints-1)

 For iPoint = 0 To nPoints-1

 xData(iPoint) = CDbl(firstX + iPoint * (lastX-firstX)/(nPoints-1))

 Next

 ' read yData

 vntResult = Form.OpusRequestData("READ_DATA", yData)

 For iPoint = 0 To nPoints-1

 yData(iPoint) = CDbl(yData(iPoint+1))

 Next

 ReDim Preserve yData(nPoints-1)

 ' add data set and perform the analysis

 URI = path & chr(92) & file & "#" & block & "-1"

 pxSession.AddDataSet URI, true, xData, yData

 Select Case UCase(typeOfAnalysis)

 Case "INTEGRATION"

 Set resultObj = pxSession.AnalysisIntegration(Id)

 result = resultObj.Areas

 Case "COMPONENTFITTING"

 Set resultObj = pxSession.analysisComponentFitting(Id)

 result = resultObj.Weights

 Case "PREDICTION"

 Set resultObj = pxSession.analysisPrediction(Id)

 result = resultObj.Values

 Case "PREDICTIONOUTLIERPLS"

 Set resultObj = pxSession.analysisPrediction(Id)

 result = resultObj.MahalanobisDistanceOutlierPValue

 Case "PREDICTIONOUTLIERIHM"

 Set resultObj = pxSession.analysisPrediction(Id)

 result = resultObj.RmsResidualsOutlierPValue

 Case Else : MsgBox "Invalid typeOfAnalysis: " & typeOfAnalysis

 End Select

 PEAXACTAnalysis = vbLf & vbLf & CStr(result(0,0)) ' set output

End Function

' %%

Search and replace the placeholder script

• Press CTRL+F3 to open the text search dialog

• Search for PEAXACTComponentAnalysis.obs (ignore any matches found in the first line)

• A matching line should start with vntResult = Form.OpusRequest("VBScript

3 - CUSTOM INTERFACES 32

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

• Replace the whole line by

' Modified by S-PACT %%%

vntResult = PEAXACTAnalysis("<typeOfAnalysis>", "<block>", "<componentName>")

' %%

• Substitute <typeOfAnalysis> with one of the following types:

• integration – calculation of peak area; requires an integration model

• componentFitting – calculation of component weight; requires a hard model

• prediction – prediction of feature value; requires a calibration model

• predictionOutlierPLS – calculates the probability (p-value) for a spectral outlier
towards a PLS model; requires a PLS calibration

• predictionOutlierIHM – calculates the probability (p-value) for a spectral outlier
towards an IHM model; requires an IHM calibration

• Substitute <block> with the desired file block, e.g. AB

• Substitute <componentName> depending on your choice of <typeOfAnalysis>:

• integration: substitute with the name of an integration range

• componentFitting: substitute with the name of a component model

• prediction, predictionOutlierPLS, predictionOutlierIHM: substitute with the
name of a calibrated feature. Be careful not to accidentally use names of integra-
tion ranges or component models. Calibrated feature names can be found in the
model summary report:

• For instance, the line would now read:
vntResult = PEAXACTAnalysis("prediction", "AB", "Cyclohexane")

Note: <componentName> can also be the component's index. The index is consecu-
tively numbered across all added models. For instance, the line would read:
vntResult = PEAXACTAnalysis("prediction", "AB", 1)
Do not enclose the index in double quotes! Use the index instead of the name when
multiple components have identical names.

• Repeat this step until all occurrences of PEAXACTComponentAnalysis.obs are replaced.

3.2 HoloPro

3.2.1 Prerequisites

Software Requirements

• HoloPro 3.2.0.6 or higher (expected to be installed in directory C:\Holopro)

3 - CUSTOM INTERFACES 33

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

• PEAXACT 4 or higher. A 32-bit installation is required.

3.2.2 Configuration
1) Run the diagnosis program first to test whether the PEAXACT Application Server is in-

stalled and registered correctly.
2) Start HoloPro and open the Channel Settings (menu Settings > Acquisition Setup)

3) Tick Multivariate in the Data Analysis Settings Panel, then click the Multivariate Predic-
tion Setup button

4) At the top of the In the next window, select a channel, then click the Add Components
button

3 - CUSTOM INTERFACES 34

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

5) From the Method Type list select New Custom Method and enter PEAXACT (or select
PEAXACT if it has already been added before).

Note: Optionally, after step 5, you may click the Setup button which appears next
to the Method Type in order to change PEAXACT logging options. In case of unex-
pected errors you should enable logging and read the log file. Otherwise you
should keep logging disabled!

6) Browse for a calibrated model file and select components. Close with OK.

3 - CUSTOM INTERFACES 35

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

Note: Adding the first model may take a while (because the PEAXACT Application
Server gets started in the background).

7) You can add more components from other models to the same channel, or you can add
components to other channels by repeating steps 4 to 6.

Note: In step 6, you can also browse for a PEAXACT session file in order to load
multiple models from the session.

8) After closing all setup windows with OK you may start measuring. The prediction of fea-
ture values takes place after each measurement. Results will be displayed in the main win-
dow of HoloPro.

4 - PEAXACT PROCESSLINK 36

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

4 PEAXACT PROCESSLINK
To start the PEAXACT ProcessLink App, select PEAXACT ProcessLink from the Windows
start menu. The application window by default contains a new Link, awaiting user setup.

Note: PEAXACT ProcessLink requires a license valid for module “ProcessLink”

4.1 Setup

(1) Select the Link you want to configure.

(2) Click to select the setup view.

(3) To rename the link, double-click the Link name or right-click the tab and select
Rename Link from the context menu. The name will be used as a node name on the
OPC UA server and as title for the real-time chart.

2

1

3

4

5

6

4 - PEAXACT PROCESSLINK 37

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

(4) Select a directory which should be monitored for incoming files. Click to browse
for a folder or manually type in the path. Optionally, choose a pre-defined file filter
or enter a custom file filter, and choose whether sub-directories should be monitored
as well.

(5) Add predictors to be used for analyzing new files. First click , then select a predic-
tor from the list, and finally use the file browser to select one or more PEAXACT
model files.

(6) If results should be written to a file, click to browse for a file or manually type in
the filename. Optionally, choose whether duplicate files should be numbered auto-
matically.

(7) The list of available results provided by each predictor is displayed in the central tree
view. Tick / untick the results you want to include / exclude. To remove a predictor
from the list, select the top-level item and press the [Del] key. To rename any result,
select it and press the [F2] key. Sub-results will be renamed automatically if they still
have the default name, but they can be given individual names as well. The result
names are used as headers in the result file, as display names in the real-time table
and real-time chart, and as node names on the OPC UA server.

(8) Click to start the folder monitoring. This will also create the result file (if specified)
and create nodes on the OPC UA server. Once started, you cannot change the con-

figuration anymore until you click to stop the folder monitoring.

(9) In case of errors, hover the mouse over the notification icon to see details.

(10) You can add, configure, and start up to 5 concurrent Links.

7

8

9

10

11

4 - PEAXACT PROCESSLINK 38

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

(11) The whole setup of all Links can be saved to a project file. You can load a project file
later in order to re-use a previously saved setup. Note that loading a project file will
replace the current setup. Also, a project can only be loaded if no Links are started.

4.2 Real-time Table

(12) Click to switch to the real-time table view.
(13) The last file which was analyzed successfully is displayed at the top.
(14) The last result values are displayed in the table.

4.3 Real-time Chart

(1) Click to switch to the real-time chart view.
(2) The last 1000 result values are plotted vs. time.
(3) Click to expand the side menu.

1

2

3

1

2

3

4 - PEAXACT PROCESSLINK 39

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

(4) Tick / untick the line graphs you want to show / hide.
(5) Right-click on the chart to open the context menu with additional options.

4.4 Result File
If a result filename is specified during setup, values will be appended to that file whenever
new results are available. When specifying the filename, you can use various placeholders
(e.g. <Timestamp>) which will be replaced with actual text when the Link gets started. Hover
the mouse over the filename field to get a filename preview (if the Link is not started) or to
get the actual used filename (after the Link is started).

The following placeholders are valid (case-sensitive):

<Timestamp> Current date and time, shortcut for <Date> <Time>

<Date> Current date, shortcut for <yyyy>-<MM>-<dd>

<Time> Current time, shortcut for <HH>.<mm>.<ss>

<d> The day of the month, from 1 through 31.

<dd> The day of the month, from 01 through 31.

<ddd> The abbreviated name of the day of the week.

<dddd> The full name of the day of the week.

<h> The hour, using a 12-hour clock from 1 to 12.

<hh> The hour, using a 12-hour clock from 01 to 12.

<H> The hour, using a 24-hour clock from 0 to 23.

<HH> The hour, using a 24-hour clock from 00 to 23.

<m> The minute, from 0 through 59.

<mm> The minute, from 00 through 59.

<M> The month, from 1 through 12.

<MM> The month, from 01 through 12.

<MMM> The abbreviated name of the month.

5

4

4 - PEAXACT PROCESSLINK 40

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

<MMMM> The full name of the month.

<s> The second, from 0 through 59.

<ss> The second, from 00 through 59.

<t> The first character of the AM/PM designator.

<tt> The AM/PM designator.

<y> The year, from 0 to 99.

<yy> The year, from 00 to 99.

<yyy> The year, with a minimum of three digits.

<yyyy> The year as a four-digit number.

4.5 OPC UA Server
PEAXACT ProcessLink contains a built-in OPC UA server which gets started automatically
when the first Link gets started. The server then stays alive until the ProcessLink application
shuts down.

The server configuration is as follows:

Server Name PEAXACT ProcessLink

Endpoint URL opc.tcp://localhost:36090

Supported Security Policies None, Basic256Sha256

Supported Message Security Modes None, Sign&Encrypt

Supported User Identity Token Types Anonymous

The server contains a top-level node for each started Link. The top-level node is named after
the Link and contains data nodes which represent the results. E.g., the following figure
demonstrates the OPC data structure and shows some attributes of the data nodes.

The StatusCode attribute of the nodes will be BadWaitingForInitialData before the first value
is available, BadOutOfService after a Link gets stopped, and Good otherwise.

4 - PEAXACT PROCESSLINK 41

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

4.6 OPC Security Setup
For testing purposes and for applications which don’t require special security considerations,
the OPC UA server supports the security policy None. This allows for a quick and easy client-
server-connection as no additional configuration is required.

When PEAXACT ProcessLink is used in a production environment, clients should connect to
the server endpoint using the Basic256Sha256 security policy and the Sign&Encrypt message
security mode to assure two-way secure communication between both parties. Additional
configuration steps are required to exchange certificates between server and client. The pro-
cedure is partly automated but also involves the manual copying of certificate files on the
server computer:

1) Connect the client to the secure server endpoint. The server will send its certificate back
to the client. Most clients provide some dialog to install and accept the certificate, in
which case you should do so and continue with step 2. If the client does not provide such
a dialog you have to manually copy and install the server certificate file to the client com-
puter. Please refer to the client’s user manual. You can find the server’s certificate file in
the following directory on the server computer:
%ProgramData%\S-PACT\PEAXACT ProcessLink\pki\own\certs

2) In step 1, the client should have also sent its certificate to the server. The server does not
provide a dialog to automatically accept the client certificate. Instead, the server stores
certificates of newly connecting clients at
%ProgramData%\S-PACT\PEAXACT ProcessLink\pki\rejected\certs
from where you have to move the file to the following directory:
%ProgramData%\S-PACT\PEAXACT ProcessLink\pki\trusted\certs

Only if both parties have installed and trusted each other’s certificate the client will be able
to connect to the server. The server will then encrypt each message so that only the client is
able to read it. The server will also digitally sign each message so that the client can check
whether it was actually sent by the server and has not been tampered with. Attackers who
happen to intercept a message won’t be able to read or modify it.

4.7 Command Line Usage
PEAXACT ProcessLink can be started with additional parameters from the command line,
from a script or batch file, or on Windows startup.

Parameters in square brackets are optional. Angle brackets represent placeholders which
must be replaced by specific values.

PeaxactProcessLink.exe [-project <file> [-activate]]

-project <file> loads a project file

-activate starts all Links that can be started. To be used in combination

 with -project

4 - PEAXACT PROCESSLINK 42

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

4.8 Additional Notes
• If an error occurs during the analysis of a new file, no changes are made to the result

text file, to the OPC UA server, or to the real-time table and chart.

• A started Link will stop silently if the monitored directory gets deleted.

• A started Link will continue working if the monitored directory gets renamed.

• New files written to the monitored directory will be ignored if the analysis of the pre-
vious file hasn’t finished yet.

5 - TROUBLE SHOOTING 43

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

5 TROUBLE SHOOTING

Problems with the COM API

Symptoms
You cannot access the PEAXACT COM API from your third-party application.

Resolution
In case of any problems with the PEAXACT COM API you should try the following

1) Run the diagnosis program

After starting the program it performs several tests. In case of errors a possible solution is
suggested. You have to fix all problems before you can use the interface correctly.

2) Under some circumstances the diagnosis program crashes (throwing a Windows error)
when the COM DLL is registered incorrectly. If this happens, you have to register the DLL
manually by executing the file

<INSTALLPATH>\DLL\COM\register.bat

Note that administrator privileges are required to execute the file. Afterwards, run the
diagnosis again.

Problems with the HoloPro Custom Interface

Symptoms
You receive an error when trying to add PEAXACT as new Custom Method in HoloPro.

Resolution
Make sure you have installed the 32-bit version of PEAXACT even on Windows 64-bit. Then
see Problems with the COM API

	Contents
	1 Quick Start
	1.1 What is PEAXACT Application Server?
	1.2 Getting Help
	User Manual
	Technical Support
	Blog

	1.3 Installation & License Activation
	1.3.1 System Requirements
	1.3.2 Licensing
	1.3.3 Installation
	Step 1: Before You Install
	Step 2: Install PEAXACT
	Step 3: After Installation

	1.3.4 License Activation
	Step 1: Get your license file
	Step 2: Activate license

	1.4 Before You Start

	2 Application Programming Interface (API)
	2.1 .NET API
	Backward Compatibility
	Support for Asynchronous Analyses
	Exception Handling
	2.1.1 Namespaces
	2.1.2 ApplicationServer Class
	Constructor
	Properties
	Methods

	2.1.3 StartOptions Class
	Constructor
	Properties

	2.1.4 Session Class
	Constructor
	Properties
	Methods

	2.1.5 McrOptions Class
	Constructor
	Properties

	2.1.6 HmfaOptions Class
	Constructor
	Properties

	2.1.7 ModelInfo Struct
	Properties

	2.1.8 PeakPickingResults Struct
	Properties

	2.1.9 IntegrationResults Struct
	Properties

	2.1.10 ComponentFittingResults Struct
	Properties

	2.1.11 PredictionResults Struct
	Properties

	2.1.12 McrResults Struct
	Properties

	2.1.13 HmfaResults Struct
	Properties

	2.2 COM API
	ProgID
	Backward Compatibility
	Dynamic Binding vs. Static Binding
	Exception Handling
	2.2.1 ApplicationServer Class
	Constructor
	Properties
	Methods

	2.2.2 Session Class
	Constructor
	Properties
	Methods

	2.2.3 ModelInfo Struct
	2.2.4 PeakPickingResults Struct
	2.2.5 IntegrationResults Struct
	2.2.6 ComponentFittingResults Struct
	2.2.7 PredictionResults Struct
	2.2.8 McrResults Struct
	2.2.9 HmfaResults Struct

	2.3 Programming Examples
	2.3.1 Using the .NET API in C#
	2.3.2 Using the COM API in VB Script
	2.3.3 Dynamically bind to future versions of the Application Server assembly (.NET API)

	3 Custom Interfaces
	3.1 OPUS Process
	3.1.1 Prerequisites
	Software Requirements
	OPUS 7 Workaround
	Additional Files

	3.1.2 OPUS Configuration
	3.1.3 Modifying OPUS scenario file
	Important Notes
	At the beginning of the script, after Option Explicit add:
	At the beginning of sub-procedure Form_OnLoad() add:
	Customize <modelFilename> to load your models
	At the beginning of sub-procedure Form_OnUnload() add:
	At the very end of the script, add:
	Search and replace the placeholder script

	3.2 HoloPro
	3.2.1 Prerequisites
	Software Requirements

	3.2.2 Configuration

	4 PEAXACT ProcessLink
	4.1 Setup
	4.2 Real-time Table
	4.3 Real-time Chart
	4.4 Result File
	4.5 OPC UA Server
	4.6 OPC Security Setup
	4.7 Command Line Usage
	4.8 Additional Notes

	5 Trouble Shooting
	Problems with the COM API
	Problems with the HoloPro Custom Interface

